LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

SECOND SEMESTER - APRIL 2014

ST 2962 - MODERN PROBABILITY THEORY

Date: 08/04/2014 Time : 09:00-12:00 Dept. No.

Max.: 100 Marks

SECTION A

Answer all of the following.

- **1.** Define: σ Algebra.
- 2. Define: Monotone Field.
- 3. Define: Discrete Probability Space.
- 4. Define: Lebesgue Stieltjes Measure.
- 5. Define Mixture of Distributions.
- 6. Let X be a continuous Gamma Variate, derive, $M_x(\theta)$.
- 7. Derive the Mean of Beta Distribution of second kind.
- 8. Explain, almost surely convergence.

9. When will you say, a random variable is said to be centered at some constant c and its expectation?

10. State Markov's theorem.

SECTION B Answer any FIVE from the following 5X8=40

- 11. A Field is closed under finite unions. Conversely, a class closed under complementation and finite union is a field.
- **12.** Explain: Induced Probability Space with an example.
- 13. Show that Binomial Distribution converges to Poisson distribution in the sense that,

$$P[X = k] = {\binom{n}{k}} p^{k} q^{n-k} \rightarrow e^{-\lambda} \lambda^{k} / k! = P[Y = k]$$

If $n \rightarrow \infty$, $p \rightarrow 0$ such that $np = \lambda$, where X is binomial with index n and Y is Poisson with parameter λ .

- 14. Let $(X, Y) \sim BVN$ $(\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$. Derive the marginal density function of X.
- 15. State and prove the properties of Expectation of Simple random variables.
- 16. If $X_n \xrightarrow{p} X$ then, there exists a subsequence $\{X_{nk}\}$ of $\{X_n\}$ which converges a.s. to X.

17. If
$$\sum_{1}^{n} x_k = S_n = S < \infty$$
 and $b_n \uparrow \infty$, then $\frac{1}{b_n} \sum_{1}^{n} b_k x_k \to 0$.

18. If X_k 's are independent and identically distributed r.v's, $S_n \rightarrow c(a.s.)$ where c is a finite number iff $E|X| < \infty$. Then prove that c=E(X).

SECTION C

Answer the following

2x20=40

19. i) Let ξ_i be the class of all intervals of the form (a, b), (a<b) a, b ξ R, but arbitrary. Then P.T. $\sigma(\xi_i)$ **=B**. (8)

10X2=20

ii) If $E|X|^{r} < \infty$, then prove that $E|X|^{r'} < \infty$ for $o < r' \le r$ and $E(X^{k})$ exists and is finite for k < r, k an (6) integer. iii) The distribution function F_X of r.v. X is non-decreasing, continuous on the right with $F_X(-\infty) =$ 0 and $F_X(+\infty) = 1$. Conversely, every function F with the above properties is the d.f. of a r.v. on some probability space. (6) (OR) 20. i) Let $X_n \xrightarrow{L} X, Y_n \xrightarrow{L} c$, then P.T. a. $X_n + Y_n \xrightarrow{L} X + c$ b. $X_n Y_n \xrightarrow{L} cX$ c. $X_n / Y_n \xrightarrow{L} X / c$. (10)ii) State and prove the Monotone Convergence theorem. (10)21. i) For a series of independent r.v's, prove that, a. Convergence in probability and in law are equivalent. b. If $|Xn| \leq b$, for some b and E (Xn) =0 for all n then convergence in q.m. in probability and in law are equivalent. (10)ii) State and prove Kolmogorov Inequalities (10)(**OR**) 22. i) State and prove Lindeberg - Feller Theorem. (12)ii) Let $\{x_n\}$ be a sequence of i.i.d. r.v.'s with characteristic function $\varphi(u)$. Then prove that S_n/n

 $\xrightarrow{p} E(X)$

(8)