LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2014

ST 2962-MODERN PROBABILITY THEORY

Date : 08/04/2014
Dept. No. \square Max. : 100 Marks
Time : 09:00-12:00

SECTION A

Answer all of the following.
$10 \times 2=20$

1. Define: σ - Algebra.
2. Define: Monotone Field.
3. Define: Discrete Probability Space.
4. Define: Lebesgue - Stieltjes Measure.
5. Define Mixture of Distributions.
6. Let X be a continuous Gamma Variate, derive, $\mathrm{M}_{\mathrm{x}}(\theta)$.
7. Derive the Mean of Beta Distribution of second kind.
8. Explain, almost surely convergence.
9. When will you say, a random variable is said to be centered at some constant c and its expectation?
10. State Markov's theorem.

SECTION B

Answer any FIVE from the following 5X8=40

11. A Field is closed under finite unions. Conversely, a class closed under complementation and finite union is a field.
12. Explain: Induced Probability Space with an example.
13. Show that Binomial Distribution converges to Poisson distribution in the sense that,

$$
P[X=k]=\binom{n}{k} p^{k} q^{n-k} \rightarrow e^{-\lambda} \lambda^{k} / k!=P[Y=k]
$$

If $\mathrm{n} \rightarrow \infty, \mathrm{p} \rightarrow 0$ such that $\mathrm{np}=\lambda$, where X is binomial with index n and Y is Poisson with parameter λ.
14. Let $(X, Y) \sim \operatorname{BVN}\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, \rho\right)$. Derive the marginal density function of X.
15. State and prove the properties of Expectation of Simple random variables.
16. If $X_{n} \xrightarrow{p} X$ then, there exists a subsequence $\left\{\mathrm{X}_{\mathrm{nk}}\right\}$ of $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ which converges a.s. to X .
17. If $\sum_{1}^{n} x_{k}=S_{n}=S<\infty$ and $\mathrm{b}_{\mathrm{n}} \uparrow \infty$, then $\frac{1}{b_{n}} \sum_{n}^{1} b_{k} x_{k} \rightarrow 0$.
18. If X_{k} 's are independent and identically distributed r.v's, $\mathrm{S}_{\mathrm{n}} \rightarrow \mathrm{c}$ (a.s.) where c is a finite number iff $\mathrm{E}|\mathrm{X}|<\infty$. Then prove that $\mathrm{c}=\mathrm{E}(\mathrm{X})$.

SECTION C

Answer the following
 $2 \times 20=40$

19. i) Let ξ_{i} be the class of all intervals of the form $(a, b),(a<b) a, b \in R$, but arbitrary. Then P.T. $\sigma\left(\xi_{i}\right)$

$$
\begin{equation*}
=\mathrm{B} . \tag{8}
\end{equation*}
$$

ii) If $\mathrm{E}|\mathrm{X}|^{\mathrm{r}}<\infty$, then prove that $\mathrm{E}|\mathrm{X}|^{\mathrm{r}^{\prime}}<\infty$ for $\mathrm{o}<\mathrm{r}^{\prime} \leq \mathrm{r}$ and $\mathrm{E}\left(\mathrm{X}^{\mathrm{k}}\right)$ exists and is finite for $\mathrm{k}<\mathrm{r}, \mathrm{k}$ an integer.
iii) The distribution function F_{X} of r.v. X is non-decreasing, continuous on the right with $F_{X}(-\infty)=$ 0 and $\mathrm{F}_{\mathrm{X}}(+\infty)=1$. Conversely, every function F with the above properties is the d.f. of a r.v. on some probability space.

(OR)

20. i) Let $X_{n} \xrightarrow{L} X, Y_{n} \xrightarrow{L} c$, then P.T.
a. $\quad X_{n}+Y_{n} \xrightarrow{L} X+c$
b. $\quad X_{n} Y_{n} \xrightarrow{L} c X$
c. $X_{n} / Y_{n} \xrightarrow{L} X / c$.
ii) State and prove the Monotone Convergence theorem.
21. i) For a series of independent r.v's, prove that,
a. Convergence in probability and in law are equivalent.
b. If $|\mathrm{Xn}| \leq \mathrm{b}$, for some b and $\mathrm{E}(\mathrm{Xn})=0$ for all n then convergence in q.m. in probability and in law are equivalent.
ii) State and prove Kolmogorov Inequalities

(OR)

22. i) State and prove Lindeberg - Feller Theorem.
ii) Let $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence of i.i.d. r.v.'s with characteristic function $\varphi(\mathrm{u})$. Then prove that $\mathrm{S}_{\mathrm{n}} / \mathrm{n}$ $\xrightarrow{p} \mathrm{E}(\mathrm{X})$
